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Cell Complexes

A cell complex, roughly speaking, is a decomposition of a topological space into various dimensional
blocks (cells) of the “same type”. Our main objects of interest in these lectures are simplicial complexes.
These are cell complexes that their building blocks are simple geometric objects (simplices) and the
information on how to glue them back can be captured entirely in a simple combinatorial manner
(via partially ordered sets). Thus simplicial complexes can be considered both as geometric and
combinatorial objects. We start with the former and delay the latter for the later.

Geometric Simplicial Complexes

Affine Hull. Let V = {v0, v1, . . . , vd} be a set of d + 1 distinct points in RN . A point x in RN
is an affine combination of v0, v1, . . . , vd if x =

∑d
i=0 tivi for some real numbers ti that

∑d
i=0 ti = 1.

The affine hull of V is the set of all affine combinations of v0, v1, . . . , vd. We say that v0, v1, . . . , vd
are called affinely independent if the vectors v1 − v0, . . . , vd − v0 are linearly independent in RN or
equivalently if the affine hull of V is a d-dimensional plane. In particular, if v0, v1, . . . , vd are affinely
independent in RN , then d ≤ N .

Convex Hull. An affine combination u =
∑d
i=0 tivi is said to be convex if ti ≥ 0 for all i. The set

of all convex combinations of elements in V

conv(V ) =
{
x ∈ RN | x =

d∑
i=0

tivi,
d∑
i=0

ti = 1, 0 ≤ ti

}
(1.1)

is called the convex hull of V .

Simplices. The convex hull σ of a set V of d + 1 affinely independent points in RN is called a
d-dimensional simplex (or a d-simplex). In Figure 1 d-simplices for d = 0, 1, 2, 3 are shown. If V is
empty, we consider conv(V ) = ∅ as (−1)-simplex. A face of σ is the convex hull of any non-empty
subset of V . Thus a face of σ is also a simplex. If τ is a face of σ we write τ ≤ σ. If, in addition, we
want to mention that τ is different from σ, we write τ < σ. The union bd(σ) of all proper faces of σ
is called the boundary of σ. A d-simplex is homeomorphic to the unit d-ball Bd = {x ∈ Rd | |x| ≤ 1}
and its boundary is homeomorphic to (d− 1)-sphere Sd−1 = {x ∈ Rd | |x| = 1}.

Definition 1 (Geometric Simplicial Complex). A geometric simplicial complex K in RN is a finite non-
empty collection of simplices in RN such that

(1) if σ ∈ K and τ ≤ σ, then τ ∈ K, and

(2) if σ and τ are members of K, then σ ∩ τ is a face of σ and τ both.
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Figure 1: d-simplex for d ∈ {0, 1, 2, 3}

Faces. The members of K are called faces of K. An inclusion-wise maximal face is a facet. A face of
dimension d is called a d-face. A 0-face is called a vertex and a 1-edge is an edge. The set of vertices
of K will be denoted by V (K). The dimension dimK of K is the maximum dimension of its faces. If
K has dimension n and if fi = fi(K) denotes the number of i-dimensional faces of K, then the vector
f(K) = (f−1, f0, f1, . . . , fn) is called the f -vector of K.

Subcomplexes. Let L be a non-empty subset of K so that for all σ ∈ L and all τ ≤ σ one has
τ ∈ L. Then L is a subcomplex of K. A subcomplex is full if whenever it contains the vertices of a face
σ of K, it contains σ as well. Thus given K and a subset U of V (K) there is a unique full subcomplex
L with U = V (L). In this situation we say that L is the subcomplex induced by U . The subcomplex
K(n) of all faces of dimension at most n in K is called the n-skeleton of K.

Let σ be a face of K. The link lkσ(K) of σ in K is the subcomplex consisting of all faces τ such
that (1) τ ∩ σ = ∅ and (2) there is a face in K that contain σ and τ both.

Triangulation. The geometric realization ||K|| of K is the union of all simplices in K equipped with
the induced topology from RN . A triangulation of a topological space X is a geometric simplicial
complex K together with a homeomorphism from ||K|| to X . The simplicial complex in Figure 2 is
triangulation of the 2-dimensional sphere with f -vector (1, 6, 12, 8).

Figure 2: The boundary complex of Octahedron

Simplicial Maps. Let L and K be two geometric simplicial complexes and f be a function from
V (L) to V (K) so that for any face σ ∈ L the image of vertices of σ span a face in K. Then f can be
extended to a continuous map ϕf : ||L|| → ||K||. The map ϕf is called the simplicial map induced
by f . The map ϕf is a simplicial homeomorphism if f is a bijection and a subset U of vertices of L
spans a face in L if and only if f(U) spans a face in K. Alternatively, one can think of a simplicial
map ϕ : ||L|| → ||K|| as a continuous map such that for nay face σ of L the restriction ϕ|σ maps σ
linearly onto a face of K.

Subdivision. A subdivision of a simplicial complex K is a simplicial complex K′ such that (1) any
face of K′ is contained in a face of K and (2) any face of K is a union of some faces of K′. Since the
union of all faces in K is the union of all faces in K, one has ||K′|| = ||K||.
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Figure 3: A regular cell decomposition of 2-sphere

CW-Complexes

In this part we introduce some more general cell decompositions. Although our main interest is in
simplicial complexes, but considering more general classes of complexes has many advantages. For
instance, it enables us to make use of operations that do not preserve simplicial complexes.

Definition 2. A (finite) CW-complex is a pair (X ,Σ) where X is a Hausdorff topological space and Σ
is a finite partition of X into open cells of various dimensions such that for each open d-cell σ ∈ Σ
there exists a continuous map ϕσ : Bd → X , called the characteristic map of σ, that satisfies the
following properties:

• ϕ̊σ : B̊d → X is a homeomorphism onto σ; and

• bd(σ) := ϕσ(Sd−1) is contained in the union of some open cells in Σ of dimension less than d.

A CW-complex is called regular (or a regular cell complex) if for all σ ∈ Σ the characteristic map of
σ is a homeomorphism to the closure σ of σ in X (i.e., the image ϕσ(Bd)) and bd(σ) is equal to the
union of some open cells in Σ.

Example (Polyhedral Complexes). A convex polytope in RN is the convex hull of a finitly many points
in RN . A proper face of a polytope is the intersection of the polytope with a supporting hyperplane
(Recall that a hyperplane H supports a polytope P at Q if P ∩H = Q and P lies in one of the closed
halfspaces bounded by H). The boundary of a polytope (the union of its proper faces) is a regular
CW sphere whose open cells are the interiors of the faces.

Homotopy Type

Let X and Y be two topological spaces and ϕ, ψ be continuous maps from X to Y. A homotopy
between ϕ and ψ is a continuous map Φ : X × [0, 1]→ Y such that Φ(x, 0) = ϕ(x) and Φ(x, 1) = ψ(x)
for all x ∈ X . We say that ϕ and ψ are homotopic if there is a homotopy between them.

Definition 3 (Homotopy Equivalence). Two topological spaces X and Y are homotopy equivalent, X '
Y, if there exist continuous maps ϕ : X → Y and ψ : Y → X such that ψ ◦ ϕ is homotopic to identity
map on idX and ϕ◦ψ is homotopic to idY . Two spaces that are homotopy equivalent are said to have
the same homotopy type. If X has the same homotopy type as a single point space we say that X is
contractible.

Strong Deformation Retract. Let Y be a subspace of X . A strong deformation retraction of X
onto Y is a continuous map Φ : X × [0, 1] → X such that Φ(x, 0) = x and Φ(x, 1) ∈ Y for all x ∈ X ,
and Φ(y, t) = y for all y ∈ Y and all t ∈ [0, 1]. The map r : X → Y defined by r(x) = Φ(x, 1) is a
retraction of X to Y (i.e., each point of Y is a fixed point). We say that Y is a strong deformation
retract of X if there exists a strong deformation retraction of X onto Y.

Lemma 4. If Y is a strong deformation retraction of X , then Y has the same homotopy type as X .
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Figure 4: Bing’s House

Collapsing. Suppose K is a regular cell complex and τ a (d− 1)-face of it. We say that τ is a free
(d− 1)-face if there exists one and only one d-face σ of K that contain τ . Observe if K is a simplicial
complex, then σ must be a facet of K. Later we show that this is the case for any regular cell complex
K. Let L be the subcomplex of K obtain by removing τ and σ from K. Then we write K ↘e L and
say L is obtained from K by an elementary collapse. We say that K collapses to L, denoted by K ↘ L
if there is a sequence of regular cell complexes K = K0,K1, . . . ,K` = L such that Ki−1 ↘e Ki for all
1 ≤ i ≤ `. If K collapses to L we also say that K is obtained from L by expansion and we denote it
by L ↗ K. We say that K is collapsible if K collapses to one vertex.

Theorem 5. If K ↘ L, then K ' L. In particular, a collapsible simplicial complex is contractible.

The converse of Theorem 5 does not hold.

Example (Bing’s House). Start with the surface of a cylinder. Remove the interior of a tangent 2-disk
from its roof and its ground floor. Add a horizental floor (a 2-disk with the interiors of two 2-disks
removed) to separate the upper and the lower rooms. And finally add cylindral walls to separate the
entrances from the rooms. Observe that in order to access the upper room one has to use the lower
entrance and, similarly, in order to access the lower room one has to use the upper entrance. The
Bing’s house does not have any collapsible cell decomposition, since it cannot have any free edge.
However, one can sees that the solid cylinder is an expansion of the Bing’s house which implies the
contractibility of this space.

Simple-Homotopy. Two regular cell complexes K and L have the same simple-homotopy type if
there exists a finite sequence K = K0,K1, . . . ,K` = L such that for each 1 ≤ i ≤ ` either Ki−1 ↘ Ki
or Ki−1 ↗ Ki.

It follows from Theorem 5 that if K and L have the same simple-homotopy type, then they have
the same homotopy type. The converse is not true in general.

Theorem 6 (Whitehead). A regular cell complex K is contractible if and only if K has the simple-
homotopy type of a vertex.
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